Dr. Marques Sophie Office 519 Number theory

Fall Semester 2014 marques@cims.nyu.edu

Problem Set #3

Exercise 1: (*) 3 points Show that if n is a positive integer, then $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0$. **Exercise 2:** (*) 3 points Define the arithmetic function Λ by:

$$\Lambda(n) = \begin{cases} \log(p) & n = p^k \\ 0 & \text{otherwise} \end{cases}$$

Show that $\sum_{d|n} \Lambda(d) = log(n)$ whenever n is a positive integer. **Exercise 3:** (\star) 3 points Let g(n) be the arithmetic function whose summary function is $f(n) = \sum_{d|n} g(d) = \frac{n-1}{n+1}$.

Exercise 4: (*) 6 points

Find g(24).

Let g(n) be the arithmetic function whose summary function is $f(n) = \sum_{d|n} g(d) = \phi(n)/n$.

- 1. Prove that g(n) is multiplicative.
- 2. Calculate $g(p^{\alpha})$ where p is a prime and $\alpha \geq 1$.
- 3. Calculate g(n) (for $n \ge 2$, your answer should depend on the prime factorization of n).

1

 $^{^{1}(\}star)$ = easy , $(\star\star)$ = medium, $(\star\star\star)$ = challenge